Steve C. Morasch <stevem@landerholm.com>

Sent:

Wednesday, January 03, 2018 4:19 PM

To:

Community Development Email

Cc:

Sarah Fox; Robert Maul

Subject:

Dawson Subdivision applicant's final rebuttal

Attachments:

19693_supplemental analysis with columbia palisades in process developme....pdf; Ltr to Hearings Examiner.pdf; 7972.p.view.memo.pdf; 7972.p.prelim.densitytransfer.plat.redesign.12.29.17.pdf; isolated buffer letter.pdf

I am submitting the applicant's final rebuttal on the Dawson Subdivision, including the following:

- 1. Letter from Landerholm, dated January 3, 2017 (attached)
- 2. Revised cul-de-sac layout (attached)
- 3. Letter from Kevin Grosz, dated January 3, 2017 (attached)
- 4. Email and Letter from Brian Dunn of Kittelson Associates dated January 3, 2017 (below and attached)
- 5. Letter from landscape architect Rebecca Wahlstrom of Olson Engineering dated January 3, 2017 (attached)
- 6. Three emails from Kurt Stonex of Olson Engineering containing additional photos showing lack of view from the property, which will be forwarded separately

Steve C. Morasch | Attorney at Law

805 Broadway Street, Suite 1000

P.O. Box 1086

Vancouver, WA 98666-1086

T: 360-558-5912 | T: 503-283-3393 | F: 360-558-5913

www.landerholm.com

-----Original Message-----

From: Brian Dunn [mailto:bdunn@kittelson.com] Sent: Wednesday, January 03, 2018 9:32 AM

To: Melanie Poe; Kristine Connolly Cc: Gayle Gerke; Steve C. Morasch

Subject: RE: Dawson's Ridge Public Comments

Melanie,

We have collected information from City of Vancouver staff on the Columbia Park Master Plan area located around the Brady Road/192nd Avenue intersection, just north of the SR 14 interchange in Vancouver. Master Plan approval for this site was given by the City in late 2016. However, Master Plan approval does not guarantee or vest trips associated with future development. Traffic becomes vested only when a site development application is approved by the City.

This is confirmed on page 27 of the PRJ-145594 Columbia Palisade Master Plan Staff Report, which states:

"Prior to the issuance of site plan approval for any project within the proposed Master Plan, the applicant shall provide the City with an updated TIA that re-analyzes the study area intersections based on existing traffic conditions in place at the time of site plan application, conditions at year of opening of the proposed site plan development a conditions at future build-out (5 years from year of opening). Any intersection movements that go into a LOS F condition due to the addition of project generated trips will require mitigation prior to the issuance of occupancy approval for the site plan development."

Since original Master Plan approval was given in late 2016, the City has recently approved the Columbia Palisades Subdivision project. According to the Executive Summary of the TIA for this development, this subdivision is the first development phase of the Columbia Palisades Master Plan, is approximately 14 acres in size and located in the northeast quadrant of the SE 192nd Avenue/SE Brady Road intersection. It will consist of 50 single family detached housing units, 26 townhouse units and 72apartment units, with occupancy expected in the year 2020.

Kittelson has performed a supplemental intersection operations analysis that accounts for the additional trips associated with the Columbia Palisades Subdivision project, as well as required off-site transportation improvements which include a second (dual) westbound left-turn lane at the Brady Road/192nd Avenue intersection.

Our attached analysis shows that all study intersections will continue operating at acceptable levels during the weekday AM and PM peak hours under site-build out conditions for our development (Dawson's Ridge), including development of the Columbia Palisades Subdivision project.

I hope this information is suitable for the project team's response to public comment on our traffic study.

Sincerely,
Brian J. Dunn
Associate Engineer/Development Services Manager
Kittelson & Associates, Inc.
Transportation Engineering / Planning
503.228.5230
503.535.7447 (direct)
503.260.4114 (cell)
-----Original Message----From: Melanie Poe [mailto:melanie.apc@comcast.net]

From: Meianie Poe [maiito:meianie.apc@comcast.n

Sent: Thursday, December 28, 2017 2:48 PM

To: Brian Dunn; Kristine Connolly Cc: Gayle Gerke; Steve C. Morasch

Subject: Dawson's Ridge Public Comments

Hi Brian and Kristine,

We have received public comments regarding our proposed subdivision at Dawson's Ridge. We have six days to submit a response back to the City on these items.

Please review the attached comment letter and provide your feedback on the issues in the "Traffic Impacts and Safety" letter.

Please let us know if you have questions or would like to discuss over the phone. Thank you very much!

Melanie Poe Project Planner 360-947-0347 melanie.apc@comcast.net

This e-mail message (including attachments) is for the sole use of the intended recipient(s). It contains confidential, proprietary or legally protected information which is the property of Landerholm, P.S. or its clients. Any unauthorized disclosure or use of the contents of this e-mail is strictly prohibited. If you have received this e-mail in error, notify the sender immediately and destroy all copies of the original message.

Steve C. Morasch 805 Broadway Street Suite 1000 PO Box 1086 Vancouver, WA 98666

T: (360) 558-5912 T: (503) 283-3393 F: (360) 558-5913 E: stevem@landerholm.com

January 3, 2018

Hearings Examiner City of Camas 616 NE Fourth Avenue Camas, Washington 98607

Re: Dawson Ridge Subdivision

Dear Hearings Examiner:

We represent the applicant and are submitting this letter for the record as applicant's final rebuttal.

We will first address Exhibit 76. Although the applicant did not receive this letter from the View Ridge Estates residents until after the hearing, the issues in this letter mirror the testimony from the neighbors that was made at the hearing, and these issues were adequately responded to by staff and the applicant at the hearing. In summary, no townhomes are proposed for this development. There is another application for a PUD that does involve townhomes and a higher density than the proposal at issue here, but that is a separate application and not relevant here.

The same traffic study was submitted for both the subdivision and the PUD applications, since the traffic study found no concurrency issues with the higher density PUD development, which establishes that concurrency and all other traffic issues are met by this lower density subdivision application.

Regarding the issue raised by the neighbors relating to the Columbia Palisades Project, we are submitting an email dated January 3, 2017, from Brian Dunn of Kittelson and Associates, explaining that the Columbia Palisades project was approved in 2016 as a master plan, which does not vest trips and therefore was not required to be reviewed in applicant's traffic study. Recently, the City of Vancouver approved a subdivision for the first development phase of the Columbia Palisades master plan. Although applicant is not required to supplement its traffic study to consider subsequent approvals, applicant's engineer has analyzed the additional traffic from this new subdivision and concluded that "all study intersections will continue operating at acceptable levels during the weekday AM and PM peak hours under site-build out conditions for our development (Dawson's Ridge), including development of the Columbia Palisades Subdivision project."

Page 2

With respect to Exhibit 78, applicant agrees with staff's concurrence to proposed changes to Conditions 11, 12 and 40 and with staff's proposed changes to conditions 9, 13, 39 and 44. Applicant rejects the remainder of the conditions and contentions raised by staff in Exhibit 78.

Applicant withdraws its request for the Hearing Examiner to make a determination relating to SDC credit for the existing arena use. Staff states there is "no record that the transportation impact fees were paid for the existing facility when it was converted." Because there is not sufficient time to investigate this issue during the one week rebuttal period and because it does not relate to any mandatory approval criterion for a subdivision, applicant withdraws the request and specifically requests the Hearings Examiner make no finding on this issue so that the applicant can raise the issue with the City at an appropriate time in the future.

For the reasons stated at the hearing and in applicant's SEPA appeal, applicant requests that its SEPA appeal be granted in its entirety, with the exception that applicant agrees to the proposed Plat Note 1 set forth in the staff report. Plat Note 1 satisfies the Comprehensive Plan provisions related to ADA/ADU, which should resolve the SEPA issue relating to Condition 15. Applicant request the remainder of its SEPA appeal be granted.

Rather than reiterating issues applicant already briefed in its hearing letter dated December 13, 2017, applicant will refer to it and incorporate it by reference.

For the reasons stated at the hearing and in Section 1 of applicant's hearing letter, applicant requests that the geotechnical hazard setback on lots 8, 9 and 31-34 will have a recorded easement restricting use to fencing, landscape and patios. Any future change in the language of the easement will require city approval based on additional geotechnical reports that support other uses. The easement will be enforced by the Dawson's Ridge HOA. Temporary warning signs will be put up on each affected lot along the setback. This should resolve the issue relating to geohazard areas. In the alternative, applicant relies on its arguments expressed at the hearing and in Section 1 of applicant's hearing letter, and also asserts that any requirement to put geohazard areas into tracts would be disproportional to the impacts in violation of RCW 82.02.020 as well as the "proportionality" requirements of Washington and US Constitutions.

For the reasons stated at the hearing and in Section 2 of applicant's hearing letter, applicant requests that in lieu of the City's requested condition relating to a view analysis at the bottom of page 2 of the staff response dated December 27, 2017, there would be a new condition added requiring the applicant to sell 2.5 acres of tax lot 127174000 for an off-site viewpoint (SU-11) and construct the viewpoint. The sale will be under threat of condemnation. The viewpoint will be accessed from McIntosh Rd via the existing driveway which will connect with trail T11. The existing gate will be removed and bollard installed. City shall issue PIF credits in lieu of cash at fair market value for land and improvements. The applicant will also remove the large fir tree in picture obscuring view. The City will design the viewpoint and submit under separate approval from this application. The applicant will commence construction of the viewpoint within 180 days of such approval weather dependent. This obviates the need for a view analysis and satisfies the issue relating to the viewpoint (SU11). There shall be no delay in engineering review or approval with regard to SU11 as suggested in staff response.

Page 3

Applicant has offered the above as a compromise on the view issues. In the alternative, since the City has apparently rejected applicant's offer, applicant maintains that no viewpoint can be required for the reasons stated at the hearing and in Section 2 of applicant's hearing letter.

Applicant also asserts that any requirement for a view point (other than the compromise proposed above) would violate "proportionality" under either RCW 82.02.020 or under the takings clause of the Washington or US Constitutions. This issue was raised in applicant's hearing letter, but applicant offers the following additional legal authorities relating to proportionality.

RCW 82.02.020 directs that generally, "no county, city, town, or other municipal corporation shall impose any tax, fee, or charge, either direct or indirect, on the ... development ... of land." Olympic Stewardship Found. v. W. Wash. Growth Mgmt. Hearings Bd., 166 Wn. App. 172, 197, 274 P.3d 1040, 1052 (2012); See also Citizens' Alliance for Prop. Rights v. Sims, 145 Wn. App. 649, 656, 187 P.3d 786 (2008), review denied, 165 Wn.2d 1030 (2009). RCW 82.02.020 applies to development conditions adopted pursuant to the Growth Management Act. Citizens' Alliance, 145 Wn. App. at 663.

The Washington Court of Appeals has interpreted RCW 82.02.020 to mean that the burden of demonstrating that demanded street improvements are "reasonably necessary as a direct result of the proposed development or plat" lies with the local government, not the applicant. *Citizens' Alliance*, 145 Wn. App. at 665.

In addition to the protection afforded applicants under RCW 82.02.020, the Fifth and Fourteenth Amendments to the US Constitution also protect property owners and applicants from unconstitutional demands for exactions by local governments. The US Supreme Court established the proportionality standard in *Dolan v. City of Tigard*, 512 U.S. 374, 386-94, 114 S.Ct. 2309, 129 L.Ed.2d 304 (1994). In that case, the City of Tigard demanded that the landowner deed a flood plain and a bike path to the City as a condition of land use approval for an expanded plumbing store. The *Dolan* Court held that an exaction requiring dedication of land is an unconstitutional taking of property unless the exaction is "roughly proportional" to the impact of the proposed development. *Id.* at 386, 391.

The US Supreme Court recently held that the *Dolan* rule applies to both monetary and non-monetary exactions, including street improvements, and that the *Dolan* rule prohibits the government from denying a permit to avoid "rough proportionality." *Koontz v. St. Johns River Water Mgmt. Dist.*, 568 US ___, 133 S.Ct. 2586, 186 L.Ed.2d 697 (2013).

Importantly, the courts have established that the city has the burden of establishing rough proportionality. *David Hill Dev., LLC v. City of Forest Grove*, 688 F. Supp. 2d 1193, 1211 (D. Or. 2010); *Dolan*, 374 US at 391. To demonstrate "rough proportionality" the city must make an "individualized determination" that the required dedication is related in both extent and nature to the proposed development's impact. *Dolan*, 374 US at 391

Page 4

Similarly, RCW 82.02.020 also requires an individualized determination, as the Court discussed in *Citizens' Alliance*:

RCW 82.02.020 mandates that a government imposing requirements such as the clearing limits here demonstrate that the restriction is "reasonably necessary as a direct result of the proposed development or plat." Our supreme court has repeatedly held that this statute requires "that development conditions must be tied to a specific, identified impact of a development on a community." The plain language of the statute does not permit conditions that are reasonably necessary for all development, or any potential development. Rather, the statute specifically requires that a condition be "reasonably necessary as a direct result of the proposed development."

Citizens' Alliance for Prop. Rights v. Sims, 145 Wn. App. 649, 665, 187 P.3d 786, 794 (2008) (footnotes omitted). As the Court noted in Citizens' Alliance, Burton v. Clark County states the applicable standard for determining nexus and proportionality:

[T]he government must show that the development for which a permit is sought will create or exacerbate the identified public problem. This is the same as to say that there must be a relationship (nexus) between the development and the identified public problem; that the necessary relationship will exist if the development will create or exacerbate the identified problem; but that the necessary relationship will not exist if the development will not adversely impact the identified public problem. Thus, the Nollan Jv. California Coastal Commission, 483 U.S. 825, 831, 107 S. Ct. 3141, 97 L. Ed. 2d 677 (1987)] Court rejected an easement that would have improved public access to the beach, even though the Commission's staff report said improved public access was needed, because the Nollans' project, replacing a bungalow with a new house, would not make the identified public problem, lack of public access, any worse than before. Similarly, the Dolan court rejected Tigard's exaction of a floodplain easement that would have enhanced the public's recreational opportunities, even though such opportunities were needed, because Dolan's project, a larger retail outlet, would not make the identified public problem, the public's lack of recreational opportunities, any worse than before. These holdings are consistent with the fundamental purpose of the Takings Clause, which is not to bar government from requiring a developer to deal with problems of the developer's own making, but which is "to bar Government from forcing some people alone to bear public burdens which, in all fairness and justice, should be borne by the public as a whole."

Page 5

Citizens' Alliance for Prop. Rights v. Sims, 145 Wn. App. 649, 669, 187 P.3d 786, 796 (2008) quoting Burton v. Clark County, 91 Wn. App. 505, 521-22, 958 P.2d 343 (1998) (footnotes omitted) (quoting Dolan, 512 U.S. at 384).

Based on the above authorities, neither the City's demand for a viewpoint (SU-11) nor its demand that geohazard areas (or storm easements) be placed in tracts meets the City's burden of demonstrating proportionality.

Finally, a view analysis is not required under CMC section 16.33.010.B. This issue was discussed at length in the applicant's August 9, 2017, Project Narrative (with photos) at page 51 through 53 of the project narrative. The City waited until its final rebuttal to raise any issue with applicant's narrative. If the City felt a view analysis was required, the City should have raised it as a requirement in the pre-application conference, or at some other point in the process, rather than waiting until final rebuttal.

Nevertheless, the City's final rebuttal is mistaken. A view analysis is not required here. A view analysis is <u>only</u> required under CMC section 16.33.010.C.1 when "a proposed development is likely to impact the <u>public</u> views of areas identified under Subsection B of this chapter [emphasis added]." As discussed in the August 9, 2017, Project Narrative and as shown on the photos submitted with the Project Narrative and at the hearing, there are no existing "public" views that would be impacted by the proposed development. Therefore, no further view analysis is needed.

These "view analysis" provisions in CMC section 16.33.010.C must be interpreted in light of the Policy Background provisions CMC section 16.33.010.A and the "Policies" in CMC section 16.33.010.B. CMC section 16.33.010.A.5 specifically states that it is "impractical" to protect private views through site specific land use review. Thus, only public views must be protected, consistent with the language of CMC section 16.33.010.B, which states that it is the City's policy to protect "public" views and CMC section 16.33.010.C, stating that a view analysis is only needed when a development is likely to impact "public" views.

The question of what constitutes a "public view" is clarified by CMC section 16.33.010.A.2, which states the "city has developed particular sites for the public's enjoyment of views" and CMC section 16.33.010.A.3, which refers to "obstruction of public views" and gives examples, such as "when a development along a street creates a continuous wall separating the street from the view."

Regardless of whether any views from the subject property exist or not (and applicant contends they do not), there is no evidence in the record of any public view from anywhere off site that would be obstructed in any way by the proposed development. The photographs included with the August 9, 2017 Project Narrative (pages 50-53) demonstrate that there is no existing "public view" from anywhere off site that would be obstructed by this development. Therefore, the City has absolutely no authority to impose a condition requiring a "view analysis" to be done for this application.

Page 6

No provision of CMC section 16.33.010 authorizes the City to require an applicant create a "public view" on private property, even if there were any existing views from the property. Based on the photos presented at the hearing, as well as the additional photos presented with this final rebuttal by Olson Engineering, there are no existing views from the subject property. But even if there were, the City has no authority to require a "view analysis" for the reasons discussed above and the City has no authority to require the applicant to provide a view point or park without first satisfying its proportionality obligations, as discussed above, and even if those could be satisfied, for the reasons discussed at the hearing and in Section 2 of the applicant's hearing letter, there is no authority to require the applicant to provide an SU-11 view point under terms of the PROS plan.

For the reasons stated at the hearing and in Section 3 of applicant's hearing letter, applicant rejects staff's request for permanent fencing at the time of platting and renews its request that conditions 48 and 51 be revised to require temporary fencing at the time of final platting but to defer permanent fencing until occupancy of the applicable lots.

The applicant also rejects staff's request that the critical areas and stormwater easements on Lot 39 be placed in a tract. In addition to violating proportionality, there is not code basis for this request. First, there is no code basis to require a stormwater easement to be placed in a tract. A stormwater easement is not an "access tract" or any type of critical area. So the stormwater easement crossing Lot 39 may remain an easement and the City may not demand this be made a tract. Second, although there may be a code basis to require a riparian/wetland critical area to be placed in a tract, Kevin Grosz with Olson Environmental has explained in the attached letter why the 10-foot wide asphalt trail which provides multiple human activities (walking, biking, and horseback riding) will functionally isolate the buffer. Therefore, due to the functional isolation caused by the 10-foot wide asphalt trail to the east, there is no critical area on Lot 39 to protect, and certainly not one that would need to be in a tract.

Alternatively, applicant requests a reduction in lot size for Lots 37-39 of approximately 4,213 square feet under (2,054 square feet of stormwater area and 2,159 square feet of wetland/riparian habitat) under Section 18.09.060.D, which allows additional flexibility in a density transfer subdivision where, as here, an open space and critical areas tract is provided that includes one-half acre or more of contiguous acreage. The large open space and critical area tracts provided in this subdivision far exceed the half acre standard needed for flexibility, therefore, flexibility should be provided.

Finally, we understand the City is willing to support 40% lot coverage. We would still request equal treatment to Parklands with the same size lots and 50% coverage to promote ADU and ADA uses. The additional lot coverage will support the City's goals of facilitating ADA and ADU lots.

We are also submitting an additional lot layout for the cul-de-sac lots (6-11) showing compliance with the City's 80 foot width requirement.

Page 7

5. Conclusion.

With the above changes and clarifications, the applicant requests approval subject to the clarifications and modifications discussed above and in applicant's SEPA appeal.

Thank you for your consideration of this matter.

Sincerely,

LANDERHOLM, P.S.

STEVE C. MORASCH Attorney at Law

SCM/jsr

LUGD01-000032 - Letter to Hearings Examiner.DOCX

12/29/2017

	۶	→	*	•	+	•	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		77	4		ሻ	† †	ř	ሻ	^	ř
Traffic Volume (vph)	1	9	11	610	10	47	11	689	266	26	759	2
Future Volume (vph)	1	9	11	610	10	47	11	689	266	26	759	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		0.97	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.92		1.00	0.88		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	940		3433	1422		992	3406	1455	1543	3505	1615
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	940		3433	1422		992	3406	1455	1543	3505	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	1	10	13	701	11	54	13	792	306	30	872	2
RTOR Reduction (vph)	0	12	0	0	38	0	0	0	181	0	0	1
Lane Group Flow (vph)	1	11	0	701	27	0	13	792	125	30	872	1
Heavy Vehicles (%)	0%	89%	82%	2%	100%	0%	82%	6%	11%	17%	3%	0%
Turn Type	Prot	NA		Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	0.0	0.0		47.5	40.5	ii National production	0.0	00.0	4	4.0	00.5	8
Actuated Green, G (s)	0.6	2.6 2.6		17.5	19.5		0.9	22.6	22.6	1.8	23.5	23.5
Effective Green, g (s) Actuated g/C Ratio	0.01	0.04		17.5	19.5		0.9	22.6	22.6	1.8	23.5	23.5
Clearance Time (s)	5.0	5.0		0.27 5.0	0.30 5.0		0.01 5.0	0.35 5.0	0.35	0.03	0.36	0.36
Vehicle Extension (s)	1.0	1.0		1.0	1.0		1.0	1.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	16	37		931	429		13		1.0	1.0	1.0	1.0
v/s Ratio Prot	0.00	c0.01		c0.20	0.02		0.01	1193 0.23	509	43	1277	588
v/s Ratio Perm	0.00	CU.U I		00.20	0.02		0.01	0.23	0.09	c0.02	c0.25	0.00
v/c Ratio	0.06	0.28		0.75	0.06		1.00	0.66	0.09	0.70	0.68	0.00
Uniform Delay, d1	31.7	30.0		21.5	16.0		31.8	17.7	14.9	31.1	17.3	13.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	1.5		3.1	0.0		249.6	1.1	0.1	32.8	1.2	0.0
Delay (s)	32.3	31.6		24.6	16.0		281.4	18.8	15.0	63.9	18.6	13.0
Level of Service	С	С		C	В		F	В	В	E	В	В
Approach Delay (s)		31.6		ar serie	23.9			20.8			20.1	
Approach LOS		С			С			C			C	
Intersection Summary		N. W.			SARSA				NAME			
HCM 2000 Control Delay			21.5	Н	CM 2000	Level of S	Service		С	the transfer of the transfer o		
HCM 2000 Volume to Capacity	/ ratio		0.70									
Actuated Cycle Length (s)			64.5	St	um of lost	time (s)			20.0			
Intersection Capacity Utilization	n		54.0%		U Level o				Α			
Analysis Period (min)			15									
c Critical Lane Group												

	1	-	-	*	-	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	4			ሻ	
Traffic Volume (vph)	684	0	0	0	239	0
Future Volume (vph)	684	0	0	0	239	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0			4.0	
Lane Util. Factor	0.95	0.95			1.00	
Frt	1.00	1.00		10	1.00	
Flt Protected	0.95	0.95			0.95	
Satd. Flow (prot)	1573	1573			1719	
Flt Permitted	0.95	0.95			0.95	
Satd. Flow (perm)	1573	1573			1719	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	834	0	0	0	291	0
RTOR Reduction (vph)	0	0	0	0	0	0
Lane Group Flow (vph)	417	417	0	0	291	0
Heavy Vehicles (%)	9%	0%	0%	0%	5%	0%
Turn Type	Perm	NA			Prot	
Protected Phases		8			2	
Permitted Phases	8					
Actuated Green, G (s)	35.2	35.2			15.5	
Effective Green, g (s)	35.2	35.2			15.5	
Actuated g/C Ratio	0.59	0.59			0.26	
Clearance Time (s)	5.0	5.0			4.0	
Vehicle Extension (s)	3.5	3.5			3.5	
Lane Grp Cap (vph)	927	927			446	9
v/s Ratio Prot					c0.17	
v/s Ratio Perm	c0.27	0.27				
v/c Ratio	0.45	0.45			0.65	
Uniform Delay, d1	6.8	6.8			19.7	
Progression Factor	1.00	1.00			1.00	
Incremental Delay, d2	1.6	1.6			3.6	
Delay (s)	8.4	8.4			23.3	
Level of Service	Α	Α			С	
Approach Delay (s)		8.4	0.0		23.3	
Approach LOS		Α	А		С	
Intersection Summary					KATAD.	可担负总额
HCM 2000 Control Delay			12.3	H	CM 2000	Level of Service
HCM 2000 Volume to Capac	city ratio		0.51			
Actuated Cycle Length (s)			59.7		ım of lost	
Intersection Capacity Utilizat	tion		94.3%	IC	U Level o	f Service
Analysis Period (min)			15			
c Critical Lane Group						

. "	1	1	†	~	- 1	1
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*v*	TIDIT.	1>	HBIT	ሻ	· †
Traffic Volume (veh/h)	154	13	207	47	8	378
Future Volume (Veh/h)	154	13	207	47	8	378
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	188	16	252	57	10	461
Pedestrians	100		202		10	401
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			N
			None			None
Median storage veh)		8 6				
Upstream signal (ft)						
pX, platoon unblocked	700					
vC, conflicting volume	762	280			309	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	762	280			309	
tC, single (s)	6.5	6.4			4.2	Total State of the
tC, 2 stage (s)						
tF (s)	3.6	3.5			2.3	
p0 queue free %	48	. 98			99	
cM capacity (veh/h)	364	724			1218	
Direction, Lane#	WB 1	NB 1	SB 1	SB 2		313
Volume Total	204	309	10	461		,
Volume Left	188	0	10	0		
Volume Right	16	57	0	0		
cSH	379	1700	1218	1700		
Volume to Capacity	0.54	0.18	0.01	0.27		
Queue Length 95th (ft)	77	0	1	0		
Control Delay (s)	25.0	0.0	8.0	0.0		
Lane LOS	D		A			
Approach Delay (s)	25.0	0.0	0.2			
Approach LOS	D					
Intersection Summary			N. Carrier	NAME OF		
Average Delay			5.3			
Intersection Capacity Utiliza	ation		35.9%	101	Harri	f Carde
	1UUII			100	revel 0	f Service
Analysis Period (min)			15			

, 1	۶	→	*	1	4-	*	1	†	*	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1 2	4			4			4			4	
Traffic Volume (veh/h)	1	36	12	1	108	0	40	0	0	0	0	6
Future Volume (Veh/h)	1	36	12	1	108	0	40	0	0	0	0	6
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	1	44	15	1	132	0	49	0	0	0	0	7
Pedestrians					1			1			1	
Lane Width (ft)					12.0			12.0			12.0	
Walking Speed (ft/s)					3.5			3.5			3.5	
Percent Blockage					0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	133			60			196	190	54	190	197	133
vC1, stage 1 conf vol	100											100
vC2, stage 2 conf vol												
vCu, unblocked vol	133			60			196	190	54	190	197	133
tC, single (s)	4.1			4.2			7.1	7.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)							REIS IN	7.0	0.2	1.2	r.u	0.2
tF (s)	2.2			2.3			3.5	4.9	3.3	3.6	4.5	3.3
p0 queue free %	100			100			93	100	100	100	100	99
cM capacity (veh/h)	1463			1517			753	560	1018	754	619	921
							100	300	1010	104	019	321
Direction, Lane #	EB 1	WB 1	NB 1	SB 1				9 - 2 - 2 - 2				
Volume Total	60	133	49	7								
Volume Left	1	1	49	0								
Volume Right	15	0	0	7								
cSH	1463	1517	753	921								
Volume to Capacity	0.00	0.00	0.07	0.01								
Queue Length 95th (ft)	0	0	5	1								
Control Delay (s)	0.1	0.1	10.1	8.9								
Lane LOS	Α	Α	В	Α								
Approach Delay (s)	0.1	0.1	10.1	8.9		¥						
Approach LOS			В	Α								
Intersection Summary						135 350						
Average Delay			2.3									
Intersection Capacity Utiliza	ation		22.1%	IC	U Level c	of Service			Α			
Analysis Period (min)			15									

SimTraffic Performance Report Total Traffic 2018 AM Peak Hour - with Columbia Palisades

12/29/2017

1: SE 192nd Ave & SE Brady Rd Performance by approach

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.0	0.1	0.1
Denied Del/Veh (s)	0.2	0.1	0.0	0.3	0.1
Total Delay (hr)	0.1	3.0	2.2	2.2	7.6
Total Del/Veh (s)	17.4	12.8	8.2	10.2	10.4
Vehicles Entered	25	843	971	779	2618

2: SE 192nd Ave & SR 14 WB Ramps Performance by approach

Approach	WB	NB	SB	All
Denied Delay (hr)	0.3	0.0	0.0	0.3
Denied Del/Veh (s)	3.4	0.0	0.0	0.4
Total Delay (hr)	0.6	0.1	1.7	2.5
Total Del/Veh (s)	8.2	0.6	4.4	3.7
Vehicles Entered	283	701	1371	2355

3: SR 14 EB Ramps & SE 192nd Ave Performance by approach

Approach	EB	SB	All
Denied Delay (hr)	0.0	0.0	0.0
Denied Del/Veh (s)	0.2	0.0	0.1
Total Delay (hr)	1.6	1.3	2.8
Total Del/Veh (s)	8.2	19.4	11.0
Vehicles Entered	686	230	916

4: SE Brady Rd & NW McIntosh Rd Performance by approach

Approach	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.1
Denied Del/Veh (s)	0.0	0.1	0.5	0.3
Total Delay (hr)	0.8	0.2	0.1	1.1
Total Del/Veh (s)	18.9	1.2	0.8	3.8
Vehicles Entered	159	478	391	1028

5: Sacajawea St & NW McIntosh Rd Performance by approach

Approach	EB	WB	NB	SB	All	建国际联合工程,在 1915年,1915年,1915年,1915年
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.0	0.1	0.1	0.1	0.1	
Total Delay (hr)	0.0	0.0	0.0	0.0	0.1	
Total Del/Veh (s)	0.4	0.2	4.4	2.6	1.1	
Vehicles Entered	59	101	41	6	207	

12/29/2017

	۶	→	*	1	+	*	4	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Þ		77	4		ሻ	ተተ	7	ሻ	^	7
Traffic Volume (vph)	2	12	2	403	10	55	2	973	560	72	1074	3
Future Volume (vph)	2	12	2	403	10	55	2	973	560	72	1074	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		0.97	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.98		1.00	0.87		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	991		3433	1443		992	3406	1455	1543	3505	1615
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	991		3433	1443		992	3406	1455	1543	3505	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	2	14	2	463	11	63	2	1118	644	83	1234	3
RTOR Reduction (vph)	0	2	0	0	52	0	0	0	225	0	0	1
Lane Group Flow (vph)	2	14	0	463	22	0	2	1118	419	83	1234	2
Heavy Vehicles (%)	0%	89%	82%	2%	100%	0%	82%	6%	11%	17%	3%	0%
Turn Type	Prot	NA		Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases									4			8
Actuated Green, G (s)	0.7	1.1		. 12.9	13.3		0.7	34.4	34.4	6.3	40.0	40.0
Effective Green, g (s)	0.7	1.1		12.9	13.3		0.7	34.4	34.4	6.3	40.0	40.0
Actuated g/C Ratio	0.01	0.01		0.17	0.18		0.01	0.46	0.46	0.08	0.54	0.54
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lane Grp Cap (vph)	16	14		592	256		9	1568	670	130	1876	864
v/s Ratio Prot	0.00	c0.01		c0.13	0.02		0.00	c0.33		c0.05	c0.35	
v/s Ratio Perm									0.29			0.00
v/c Ratio	0.12	1.00		0.78	0.09		0.22	0.71	0.63	0.64	0.66	0.00
Uniform Delay, d1	36.7	36:8		29.6	25.6		36.7	16.2	15.3	33.1	12.4	8.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.3	241.3		6.2	0.1		4.5	1.3	1.3	7.3	0.6	0.0
Delay (s)	38.0	278.1		35.7	25.7		41.2	17.5	16.6	40.4	13.1	8.1
Level of Service	D	F		D	C		D	В	В	D	В	Α
Approach Delay (s)		251.4			34.3			17.2			14.8	
Approach LOS		F			С			В			В	
Intersection Summary		ENERGY.										
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	ty ratio		0.73									
Actuated Cycle Length (s)			74.7		um of lost				20.0			
Intersection Capacity Utilization	on		64.5%	IC	U Level o	f Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	>	. 🖛	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	ă
Lane Configurations	ሻ	र्स			ሻ		
Traffic Volume (vph)	1204	3	0	0	457	0	
Future Volume (vph)	1204	3	0	0	457	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0		TOWN OF THE BUILDING TO	4.0		
Lane Util. Factor	0.95	0.95			1.00		
Frt	1.00	1.00			1.00		
Flt Protected	0.95	0.95			0.95		
Satd. Flow (prot)	1573	1578			1719		
Flt Permitted	0.95	0.95			0.95		
Satd. Flow (perm)	1573	1578			1719		
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	
Adj. Flow (vph)	1468	4	0	0	557	0	
RTOR Reduction (vph)	0	0	0	0	0	0	
Lane Group Flow (vph)	734	738	0	0	557	0	
Heavy Vehicles (%)	9%	0%	0%	0%	5%	0%	
Turn Type	Perm	NA			Prot		
Protected Phases		8			2		
Permitted Phases	8						
Actuated Green, G (s)	35.0	35.0			24.7		
Effective Green, g (s)	35.0	35.0			24.7		
Actuated g/C Ratio	0.51	0.51			0.36		
Clearance Time (s)	5.0	5.0			4.0		
Vehicle Extension (s)	3.5	3.5			3.5		
Lane Grp Cap (vph)	801	803			618		S.
v/s Ratio Prot					c0.32		
v/s Ratio Perm	0.47	0.47					
v/c Ratio	0.92	0.92			0.90		
Uniform Delay, d1	15.5	15.5			20.8		
Progression Factor	1.00	1.00			1.00		
Incremental Delay, d2	17.0	17.3			16.6		
Delay (s)	32.5	32.8			37.5		
Level of Service	С	С			D		
Approach Delay (s)		32.6	0.0		37.5		
Approach LOS		С	Α		D		
Intersection Summary		100160		F-170			a to to to
HCM 2000 Control Delay			34.0	HC	CM 2000 I	Level of Service)
HCM 2000 Volume to Capaci	ty ratio		0.91				
Actuated Cycle Length (s)			68.7		ım of lost		
Intersection Capacity Utilization	on		109.7%	IC	U Level o	f Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	4	†	-	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		4		ሻ	†	
Traffic Volume (veh/h)	91	14	418	176	18	280	
Future Volume (Veh/h)	91	14	418	176	18	280	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	
Hourly flow rate (vph)	111	17	510	215	22	341	
Pedestrians			4				
Lane Width (ft)			12.0				
Walking Speed (ft/s)			3.5				
Percent Blockage			0				
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110110			140110	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1006	618			725		
vC1, stage 1 conf vol	1000	310			120		
vC2, stage 2 conf vol							
vCu, unblocked vol	1006	618			725		
tC, single (s)	6.5	6.4			4.2		
tC, 2 stage (s)	0.0	0.1			7.2		
tF (s)	3.6	3.5			2.3		
p0 queue free %	56	96			97		
cM capacity (veh/h)	255	463			851		
	599.00 IS	10 100000	OP 4	00.0	001		
Direction, Lane # Volume Total	WB 1 128	NB 1	SB 1	SB 2		APS AIC	
Volume Left	128	725	22	341			
		0	22	0			
Volume Right	17	215	0	0			
cSH	271	1700	851	1700			
Volume to Capacity	0.47	0.43	0.03	0.20			
Queue Length 95th (ft)	59	0	2	0			
Control Delay (s)	29.6	0.0	9.3	0.0			
Lane LOS	D		Α				
Approach Delay (s)	29.6	0.0	0.6				
Approach LOS	D						
Intersection Summary			N. S.				
Average Delay			3.3				
Intersection Capacity Utiliz	ation		45.3%	ICI	J Level o	f Service)
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 5: Sacajawea St & NW McIntosh Rd

12/29/2017

	•		_		+	4	4	†		1	1	4
Mayamant	EBL	COT	FDD	*	MDT	MOD	7		~		*	
Movement Lane Configurations	EBL	EBT ♣	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h)	7	119	49	SCHOOL AND	63	0	0.4	4			4	TO SHOW HE SHAW
Future Volume (Veh/h)	7	119	49	1	63	0	31	0	2	0	0	7
Sign Control			49	1		0	31	0	2	0	0	7
Grade		Free 0%			Free			Stop			Stop	
Peak Hour Factor	0.82	0.82	0.00	0.00	0%	0.00	0.00	0%	0.00		0%	mineret.
Hourly flow rate (vph)			0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Pedestrians	9	145 1	60	1	77	0	38	0	2	0	0	9
								4				
Lane Width (ft)		12.0					T destroyeen	12.0				
Walking Speed (ft/s)		3.5						3.5				
Percent Blockage		0						0				
Right turn flare (veh)												
Median type	and the ballon area	None	and Assessment		None				ti grand authorite	and a state of the		
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	77			209			286	276	179	274	306	78
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	77			209			286	276	179	274	306	78
tC, single (s)	4.1			4.2			7.1	7.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.5	4.9	3.3	3.6	4.5	3.3
p0 queue free %	99			100			94	100	100	100	100	99
cM capacity (veh/h)	1535			1333			650	491	866	660	530	987
Direction, Lane#	EB 1	WB 1	NB 1	SB 1								
Volume Total	214	78	40	9								
Volume Left	9	1	38	0								
Volume Right	60	0	2	9								
cSH	1535	1333	658	987								
Volume to Capacity	0.01	0.00	0.06	0.01							A Committee Committee	
Queue Length 95th (ft)	0	0	5	1								
Control Delay (s)	0.4	0.1	10.8	8.7								
Lane LOS	А	Α	В	Α								
Approach Delay (s)	0.4	0.1	10.8	8.7								
Approach LOS			В	Α								
Intersection Summary		A STATE								01/21/2019		22.55
Average Delay			1.7									
Intersection Capacity Utiliza	tion		28.6%	IC	U Level of	Service			Α			
Analysis Period (min)			15									

SimTraffic Performance Report Total Traffic 2018 PM Peak Hour - with Columbia Palisades

12/29/2017

1: SE 192nd Ave & SE Brady Rd Performance by approach

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.0	0.2	0.2
Denied Del/Veh (s)	0.6	0.1	0.0	0.5	0.2
Total Delay (hr)	0.1	2.4	4.6	3.1	10.3
Total Del/Veh (s)	27.9	14.8	10.7	9.7	11.2
Vehicles Entered	15	591	1546	1151	3303

2: SE 192nd Ave & SR 14 WB Ramps Performance by approach

Approach	WB	NB	SB	All
Denied Delay (hr)	0.3	0.0	0.0	0.3
Denied Del/Veh (s)	3.3	0.0	0.0	0.4
Total Delay (hr)	2.5	0.4	2.4	5.2
Total Del/Veh (s)	26.2	1.1	5.7	6.1
Vehicles Entered	334	1231	1484	3049

3: SR 14 EB Ramps & SE 192nd Ave Performance by approach

Approach	EB	SB	All
Denied Delay (hr)	0.1	0.0	0.1
Denied Del/Veh (s)	0.3	0.2	0.3
Total Delay (hr)	6.5	2.9	9.4
Total Del/Veh (s)	19.4	22.4	20.2
Vehicles Entered	1206	463	1669

4: SE Brady Rd & NW McIntosh Rd Performance by approach

Approach	WB	NB	SB	All
Denied Delay (hr)	0.0	0.1	0.0	0.2
Denied Del/Veh (s)	0.0	0.4	0.5	0.4
Total Delay (hr)	1.1	1.0	0.1	2.2
Total Del/Veh (s)	36.7	3.5	1.1	5.5
Vehicles Entered	107	990	301	1398

5: Sacajawea St & NW McIntosh Rd Performance by approach

Approach	EB	WB	NB	SB	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.0	0.1	0.1	0.1	0.0	
Total Delay (hr)	0.1	0.0	0.0	0.0	0.1	
Total Del/Veh (s)	0.9	0.1	4.9	2.8	1.3	
Vehicles Entered	201	61	35	8	305	

Practical expertise. Exceptional results.

222 E. Evergreen Blvd. Vancouver, WA 98660 360-695-1385

January 3, 2018

Steve Morasch Landerholm 805 Broadway Street, Suite 1000 P.O. Box 1086 Vancouver, WA 98666-1086

Re:

Dawson's Ridge Subdivision

4510 NW McIntosh Road, Camas, WA 98607

Mr. Morasch,

I have reviewed the Dawson Ridge Subdivision narrative section regarding the CMC 16.33.010 Public View and Open Space Protection and agree with the statements put forth. Further analysis is not required.

The applicant and City of Camas have had discussions about a possible offsite Columbia River view point. This offsite river viewpoint is located to the west side and downslope of the development and will not be blocked by the Dawson Ridge Subdivision.

I am a licensed Landscape Architect in the State of Washington, LA #1141.

If you have any questions, please let me know.

Uller

Thank you,

Rebecca Wahlstrom

Steve C. Morasch <stevem@landerholm.com>

Sent:

Wednesday, January 03, 2018 4:20 PM

To:

Community Development Email

Cc:

Sarah Fox; Robert Maul

Subject:

Dawson Subdivision additional photographs from end of culdesac

Attachments:

20180103_Gaz.View.1.jpg; 20180103_Gaz.View.3.jpg; 20180103_Gaz.View.2.jpg; ViewfromOffsiteviewpoint.jpg

Here is the first of the three emails from Kurt Stonex with the additional photographs for the record.

Steve C. Morasch | Attorney at Law

805 Broadway Street, Suite 1000

P.O. Box 1086

Vancouver, WA 98666-1086

T: 360-558-5912 | T: 503-283-3393 | F: 360-558-5913

www.landerholm.com

From: Kurt Stonex [mailto:kurt@olsonengr.com] **Sent:** Wednesday, January 03, 2018 1:11 PM

To: Steve C. Morasch

Cc: Gayle Gerke; Melanie Poe; David Lugliani

Subject: Photo's

Steve,

Here are some pictures from the gazebo vicinity at the end of the culdesac. You can barely see the river in one of them but only because the leaves are off.

The last picture is from the offsite view point that was discussed by the City and David.

Kurt Stonex, PE, PLS

Principal
Olson Engineering, Inc.
222 E. Evergreen Blvd.
Vancouver, WA 98660
360-695-1385 WA
503-289-9936 OR
360-695-8117 FAX
kurt@olsonengr.com

www.olsonengr.com

This e-mail message (including attachments) is for the sole use of the intended recipient(s). It contains confidential, proprietary or legally protected information which is the property of Landerholm, P.S. or its clients. Any unauthorized disclosure or use of the contents of this e-mail is strictly prohibited. If you have received this e-mail in error, notify the sender immediately and destroy all copies of the original message.

Steve C. Morasch <stevem@landerholm.com>

Sent:

Wednesday, January 03, 2018 4:21 PM

To: Cc: Community Development Email

Subject:

Sarah Fox; Robert Maul Dawson Subdivision: Tract B views to west pictures

Attachments:

West view Tract B.jpg; Another west view from Tract B.jpg; West view from Tract B.jpg; Looking northwest at southwest corner of tract b.jpg; View west from south line of Tract B.jpg; Looking at vegetation on west side of Tract B that blocks views from

tract.jpg

Here is the second of the three emails from Kurt Stonex with the additional photographs for the record.

Steve C. Morasch | Attorney at Law

805 Broadway Street, Suite 1000

P.O. Box 1086

Vancouver, WA 98666-1086

T: 360-558-5912 | T: 503-283-3393 | F: 360-558-5913

www.landerholm.com

From: Kurt Stonex [mailto:kurt@olsonengr.com] **Sent:** Wednesday, January 03, 2018 1:27 PM

To: Steve C. Morasch

Cc: Gayle Gerke; Melanie Poe; Rebecca Wahlstrom; David Lugliani

Subject: Tract B views to west pictures

Here's some photographs from Tract B looking generally west where the view would be if it wasn't for all the vegetation.

Kurt Stonex, PE, PLS

Principal
Olson Engineering, Inc.
222 E. Evergreen Blvd.
Vancouver, WA 98660
360-695-1385 WA
503-289-9936 OR
360-695-8117 FAX
kurt@olsonengr.com

www.olsonengr.com

This e-mail message (including attachments) is for the sole use of the intended recipient(s). It contains confidential, proprietary or legally protected information which is the property of Landerholm, P.S. or its clients. Any unauthorized disclosure or use of the contents of this e-mail is strictly prohibited. If you have received this e-mail in error, notify the sender immediately and destroy all copies of the original message.

Steve C. Morasch <stevem@landerholm.com>

Sent: To:

Wednesday, January 03, 2018 4:26 PM

Community Development Email

Cc:

Sarah Fox; Robert Maul

Subject:

FW: Dawson Ridge: Site Photo

Attachments:

20180103_N Prop Line.jpg; 7972.p.view.memo.pdf

Here is the third of three emails from Kurt. I am sending this again. I already sent this once but it got hung up in my outbox, so I apologize if you receive it more than once.

Steve C. Morasch | Attorney at Law

Legal advisors. Trusted advocates.

805 Broadway Street, Suite 1000

P.O. Box 1086

Vancouver, WA 98666-1086

T: 360-558-5912 | T: 503-283-3393 | F: 360-558-5913

www.landerholm.com

From: Kurt Stonex [mailto:kurt@olsonengr.com] Sent: Wednesday, January 03, 2018 4:14 PM

To: Steve C. Morasch

Subject: Dawson Ridge: Site Photo

Steve,

This picture is from the south side of Tract B. The stakes on the right are the south boundary of the tract and project boundary. Any view corridor from Tract B would be across private property to the south (left side of photo) and likely would be blocked by a typical fence height or a future home. I've also attached a copy of the preliminary plat that shows the locations where the photographs were taken from.

Thanks,

Kurt Stonex, PE, PLS

Principal Olson Engineering, Inc. 222 E. Evergreen Blvd. Vancouver, WA 98660 360-695-1385 WA 503-289-9936 OR 360-695-8117 FAX kurt@olsonengr.com

www.olsonengr.com

Practical expertise. Exceptional results.

222 E. Evergreen Blvd. Vancouver, WA 98660 360-695-1385

January 3, 2018

Steve Morasch Landerholm 805 Broadway Street, Suite 1000 P.O. Box 1086 Vancouver, WA 98666-1086

Re:

Dawson's Ridge Subdivision

4510 NW McIntosh Road, Camas, WA 98607

Mr. Morasch,

I have reviewed the Dawson Ridge Subdivision narrative section regarding the CMC 16.33.010 Public View and Open Space Protection and agree with the statements put forth. Further analysis is not required.

The applicant and City of Camas have had discussions about a possible offsite Columbia River view point. This offsite river viewpoint is located to the west side and downslope of the development and will not be blocked by the Dawson Ridge Subdivision.

I am a licensed Landscape Architect in the State of Washington, LA #1141.

If you have any questions, please let me know.

Thank you,

Rebecca Wahlstrom

